491 research outputs found

    Analysis of methods

    Get PDF
    Information is one of an organization's most important assets. For this reason the development and maintenance of an integrated information system environment is one of the most important functions within a large organization. The Integrated Information Systems Evolution Environment (IISEE) project has as one of its primary goals a computerized solution to the difficulties involved in the development of integrated information systems. To develop such an environment a thorough understanding of the enterprise's information needs and requirements is of paramount importance. This document is the current release of the research performed by the Integrated Development Support Environment (IDSE) Research Team in support of the IISEE project. Research indicates that an integral part of any information system environment would be multiple modeling methods to support the management of the organization's information. Automated tool support for these methods is necessary to facilitate their use in an integrated environment. An integrated environment makes it necessary to maintain an integrated database which contains the different kinds of models developed under the various methodologies. In addition, to speed the process of development of models, a procedure or technique is needed to allow automatic translation from one methodology's representation to another while maintaining the integrity of both. The purpose for the analysis of the modeling methods included in this document is to examine these methods with the goal being to include them in an integrated development support environment. To accomplish this and to develop a method for allowing intra-methodology and inter-methodology model element reuse, a thorough understanding of multiple modeling methodologies is necessary. Currently the IDSE Research Team is investigating the family of Integrated Computer Aided Manufacturing (ICAM) DEFinition (IDEF) languages IDEF(0), IDEF(1), and IDEF(1x), as well as ENALIM, Entity Relationship, Data Flow Diagrams, and Structure Charts, for inclusion in an integrated development support environment

    Disease-specific, neurosphere-derived cells as models for brain disorders

    Get PDF
    There is a pressing need for patient-derived cell models of brain diseases that are relevant and robust enough to produce the large quantities of cells required for molecular and functional analyses. We describe here a new cell model based on patient-derived cells from the human olfactory mucosa, the organ of smell, which regenerates throughout life from neural stem cells. Olfactory mucosa biopsies were obtained from healthy controls and patients with either schizophrenia, a neurodevelopmental psychiatric disorder, or Parkinson's disease, a neurodegenerative disease. Biopsies were dissociated and grown as neurospheres in defined medium. Neurosphere-derived cell lines were grown in serum-containing medium as adherent monolayers and stored frozen. By comparing 42 patient and control cell lines we demonstrated significant disease-specific alterations in gene expression, protein expression and cell function, including dysregulated neurodevelopmental pathways in schizophrenia and dysregulated mitochondrial function, oxidative stress and xenobiotic metabolism in Parkinson's disease. The study has identified new candidate genes and cell pathways for future investigation. Fibroblasts from schizophrenia patients did not show these differences. Olfactory neurosphere-derived cells have many advantages over embryonic stem cells and induced pluripotent stem cells as models for brain diseases. They do not require genetic reprogramming and they can be obtained from adults with complex genetic diseases. They will be useful for understanding disease aetiology, for diagnostics and for drug discovery

    Thar She Blows! A Novel Method for DNA Collection from Cetacean Blow

    Get PDF
    Background: Molecular tools are now widely used to address crucial management and conservation questions. To date, dart biopsying has been the most commonly used method for collecting genetic data from cetaceans; however, this method has some drawbacks. Dart biopsying is considered inappropriate for young animals and has recently come under scrutiny from ethical boards, conservationists, and the general public. Thus, identifying alternative genetic collection techniques for cetaceans remains a priority, especially for internationally protected species. Methodology/Principal Findings: In this study, we investigated whether blow-sampling, which involves collecting exhalations from the blowholes of cetaceans, could be developed as a new less invasive method for DNA collection. Our current methodology was developed using six bottlenose dolphins, Tursiops truncatus, housed at the National Aquarium, Baltimore (USA), from which we were able to collect both blow and blood samples. For all six individuals, we found that their mitochondrial and microsatellite DNA profile taken from blow, matched their corresponding mitochondrial and microsatellite DNA profile collected from blood. This indicates that blow-sampling is a viable alternative method for DNA collection. Conclusion/Significance: In this study, we show that blow-sampling provides a viable and less invasive method for collection of genetic data, even for small cetaceans. In contrast to dart biopsying, the advantage of this method is that it capitalizes on the natural breathing behaviour of dolphins and can be applied to even very young dolphins. Both biopsy and blow-sampling require close proximity of the boat, but blow-sampling can be achieved when dolphins voluntarily bowride and involves no harmful contact

    Essential indicators for measuring site‐based conservation effectiveness in the post‐2020 global biodiversity framework

    Get PDF
    Abstract: Work on the post‐2020 global biodiversity framework is now well advanced and will outline a vision, goals, and targets for the next decade of biodiversity conservation and beyond. For the effectiveness of Protected areas and Other Effective area‐based Conservation Measures, an indicator has been proposed for “areas meeting their documented ecological objectives.” However, the Convention on Biological Diversity (CBD) has not identified or agreed on what data should inform this indicator. Here we draw on experiences from the assessment of protected area effectiveness in the CBD's previous strategic plan to provide recommendations on the essential elements related to biodiversity outcomes and management that need to be captured in this updated indicator as well as how this could be done. Our proposed protected area effectiveness indicators include a combination of remotely derived products for all protected areas, combined with data from monitoring of both protected area management and trends in species and ecosystems based on field observations. Additionally, we highlight the need for creating a digital infrastructure to operationalize national‐level data‐capture. We believe these steps are critical and urge the adoption of suitable protected area effectiveness indicators before the post‐2020 framework is agreed in 2021

    A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction

    Get PDF
    The developmental and physiological complexity of the auditory system is likely reflected in the underlying set of genes involved in auditory function. In humans, over 150 non-syndromic loci have been identified, and there are more than 400 human genetic syndromes with a hearing loss component. Over 100 non-syndromic hearing loss genes have been identified in mouse and human, but we remain ignorant of the full extent of the genetic landscape involved in auditory dysfunction. As part of the International Mouse Phenotyping Consortium, we undertook a hearing loss screen in a cohort of 3006 mouse knockout strains. In total, we identify 67 candidate hearing loss genes. We detect known hearing loss genes, but the vast majority, 52, of the candidate genes were novel. Our analysis reveals a large and unexplored genetic landscape involved with auditory function

    Acute flaccid myelitis:cause, diagnosis, and management

    Get PDF
    Acute flaccid myelitis (AFM) is a disabling, polio-like illness mainly affecting children. Outbreaks of MM have occurred across multiple global regions since 2012, and the disease appears to be caused by non-polio enterovirus infection, posing a major public health challenge. The clinical presentation of flaccid and often profound muscle weakness (which can invoke respiratory failure and other critical complications) can mimic several other acute neurological illnesses. There is no single sensitive and specific test for MM, and the diagnosis relies on identification of several important clinical, neuroimaging, and cerebrospinal fluid characteristics. Following the acute phase of AFM, patients typically have substantial residual disability and unique long-term rehabilitation needs. In this Review we describe the epidemiology, clinical features, course, and outcomes of AFM to help to guide diagnosis, management, and rehabilitation. Future research directions include further studies evaluating host and pathogen factors, including investigations into genetic, viral, and immunological features of affected patients, host-virus interactions, and investigations of targeted therapeutic approaches to improve the long-term outcomes in this population

    Early Fasting Is Long Lasting: Differences in Early Nutritional Conditions Reappear under Stressful Conditions in Adult Female Zebra Finches

    Get PDF
    Conditions experienced during early life can have profound effects on individual development and condition in adulthood. Differences in nutritional provisioning in birds during the first month of life can lead to differences in growth, reproductive success and survival. Yet, under natural conditions shorter periods of nutritional stress will be more prevalent. Individuals may respond differently, depending on the period of development during which nutritional stress was experienced. Such differences may surface specifically when poor environmental conditions challenge individuals again as adults. Here, we investigated long term consequences of differences in nutritional conditions experienced during different periods of early development by female zebra finches (Taeniopygia guttata) on measures of management and acquisition of body reserves. As nestlings or fledglings, subjects were raised under different nutritional conditions, a low or high quality diet. After subjects reached sexual maturity, we measured their sensitivity to periods of food restriction, their exploration and foraging behaviour as well as adult resting metabolic rate (RMR). During a short period of food restriction, subjects from the poor nutritional conditions had a higher body mass loss than those raised under qualitatively superior nutritional conditions. Moreover, subjects that were raised under poor nutritional conditions were faster to engage in exploratory and foraging behaviour. But RMR did not differ among treatments. These results reveal that early nutritional conditions affect adult exploratory behaviour, a representative personality trait, foraging and adult's physiological condition. As early nutritional conditions are reflected in adult phenotypic plasticity specifically when stressful situations reappear, the results suggest that costs for poor developmental conditions are paid when environmental conditions deteriorate

    Erythrocyte Transketolase Activity, Markers of Cardiac Dysfunction and the Diagnosis of Infantile Beriberi

    Get PDF
    Infantile beriberi, or clinical thiamin (vitamin B1) deficiency in infants, is a forgotten disease in Asia, where ∼100 years ago it was a major public health problem. Children aged ∼2–3 months present in cardiac failure but usually rapidly improve if given thiamin injections. It remains relatively common in Vientiane, Lao PDR (Laos) probably because of prolonged intra- and post-partum maternal food avoidance behaviours. There has been very little recent research on the best diagnostic techniques. We conducted a case control study of 47 infants with beriberi and age-matched afebrile and febrile controls in Vientiane. The conventional measures of thiamin deficiency, basal and activated erythrocyte transketolase activities (ETK) and activation (α) coefficients, were assayed along with three markers of cardiac dysfunction - plasma brain natriuretic peptide, N-terminal pro-brain natriuretic peptide, and troponin T. Basal ETK was a better biochemical marker of infantile beriberi than the activation coefficient. Raised plasma troponin T may be a useful indicator of infantile beriberi in babies at risk and in the absence of other evident causes

    Policymakers\u27 experience of a capacity-building intervention designed to increase their use of research: A realist process evaluation

    Get PDF
    Background: An intervention’s success depends on how participants interact with it in local settings. Process evaluation examines these interactions, indicating why an intervention was or was not effective, and how it (and similar interventions) can be improved for better contextual fit. This is particularly important for innovative trials like Supporting Policy In health with Research: an Intervention Trial (SPIRIT), where causal mechanisms are poorly understood. SPIRIT was testing a multi-component intervention designed to increase the capacity of health policymakers to use research. Methods: Our mixed-methods process evaluation sought to explain variation in observed process effects across the six agencies that participated in SPIRIT. Data collection included observations of intervention workshops (n = 59), purposively sampled interviews (n = 76) and participant feedback forms (n = 553). Using a realist approach, data was coded for context-mechanism-process effect configurations (retroductive analysis) by two authors. Results: Intervention workshops were very well received. There was greater variation of views regarding other aspects of SPIRIT such as data collection, communication and the intervention’s overall value. We identified nine inter-related mechanisms that were crucial for engaging participants in these policy settings: (1) Accepting the premise (agreeing with the study’s assumptions); (2) Self-determination (participative choice); (3) The Value Proposition (seeing potential gain); (4) ‘Getting good stuff’ (identifying useful ideas, resources or connections); (5) Self-efficacy (believing ‘we can do this!’); (6) Respect (feeling that SPIRIT understands and values one’s work); (7) Confidence (believing in the study’s integrity and validity); (8) Persuasive leadership (authentic and compelling advocacy from leaders); and (9) Strategic insider facilitation (local translation and mediation). These findings were used to develop tentative explanatory propositions and to revise the programme theory. Conclusion: This paper describes how SPIRIT functioned in six policy agencies, including why strategies that worked well in one site were less effective in others. Findings indicate a complex interaction between participants’ perception of the intervention, shifting contextual factors, and the form that the intervention took in each site. Our propositions provide transferable lessons about contextualised areas of strength and weakness that may be useful in the development and implementation of similar studies

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF
    corecore